Erratum to "Confirmation as partial entailment" [Journal of Applied Logic 11 (2013) 364-372]

نویسندگان

  • Vincenzo Crupi
  • Katya Tentori
چکیده

Article history: Received 18 February 2014 Accepted 18 February 2014 Available online 17 March 2014 We provide a correction to the proof of the main result in Crupi and Tentori (2013). © 2014 Elsevier B.V. All rights reserved. Michael Schippers (University of Oldenburg) pointed out to us in personal correspondence an error in the proof of the main result in Crupi and Tentori [1]. The flaw spotted by Schippers is that Lemma 2 (p. 369) does not hold in its original formulation: the scheme of assignment there defined does not guarantee that one ends up with a probabilistically coherent set of values. In order to amend and validate the proof, it is sufficient to replace Lemma 2 and the subsequent lines (up to Lemma 3) by the following. Lemma 2 (Corrected). For any x, y1, y2 such that x ∈ [0, 1], y1, y2 ∈ (0, 1), there exist e, h1, h2 ∈ Lc and P ′′ ∈ P such that P ′′(h1|e)/P ′′(h1) = P ′′(h2|e)/P ′′(h2) = x, P ′′(h1) = y1, and P ′′(h2) = y2. Proof [Corrected]. Let w ∈ (0,1) be given so that w < (1− y1)/(1− xy1), (1− y2)/(1− xy2) (as the latter quantities must all be positive, w exists). The equalities in Lemma 2 arise from the following scheme of probability assignments P (h1 ∧ h2 ∧ e) = xy1y2w; P (¬h1 ∧ h2 ∧ e) = (1− xy1)xy2w; P (h1 ∧ h2 ∧ ¬e) = (1− xw)2y1y2 1− w ; P (¬h1 ∧ h2 ∧ ¬e) = [ 1− (1− xw)y1 1− w ] (1− xw)y2; P (h1 ∧ ¬h2 ∧ e) = xy1(1− xy2)w; P (¬h1 ∧ ¬h2 ∧ e) = (1− xy1)(1− xy2)w; P (h1 ∧ ¬h2 ∧ ¬e) = (1− xw)y1 [ 1− (1− xw)y2 1− w ] ; P (¬h1 ∧ ¬h2 ∧ ¬e) = [ 1− (1− xw)y1 1− w ][ 1− (1− xw)y2 1− w ] (1− w). DOI of original article: http://dx.doi.org/10.1016/j.jal.2013.03.002. * Corresponding author. http://dx.doi.org/10.1016/j.jal.2014.02.001 1570-8683/© 2014 Elsevier B.V. All rights reserved. V. Crupi, K. Tentori / Journal of Applied Logic 12 (2014) 230–231231 Suppose there exist (x, y1), (x, y2) ∈ Dk such that k(x, y1) = k(x, y2). Then, by Lemma 2 [Corrected]and the definition of Dk (see Crupi and Tentori [1, p. 369]), there exist e, h1, h2 ∈ Lc and P ′′ ∈ P such thatP(h1|e)/P (h1) = P(h2|e)/P (h2) = x, P(h1) = y1, P(h2) = y2, and P ′′(e) = w. By the probabilitycalculus, if the latter equalities hold, then P(h1 ∧ e) P(h1)P ′′(e), P(h2 ∧ e) P(h2)P ′′(e), andmoreover P(e|h1)/P ′′(e) = P(e|h2)/P ′′(e) = x. Thus, there exist e, h1, h2 ∈ Lc and P ′′ ∈ P such thateither CP ′′(h1, e) = k(x, y1) = k(x,w) = CP ′′(e, h1) even if P′′(h1 ∧ e) P′′(h1)P ′′(e), or CP ′′(h2, e) =k(x,y2) = k(x,w) = CP ′′(e, h2) even if P′′(h2 ∧ e) P′′(h2)P ′′(e), contradicting axiom A2 (see Crupi andTentori [1, p. 365]). Conversely, A2 implies that, for any (x, y1), (x, y2) ∈ Dk, k(x, y1) = k(x, y2). So, for A2to hold, there must exist a function m such that, for any e, h ∈ Lc and P ∈ P, if P (h∧ e) P (h)P (e), thenCP (h, e) = m[P (h|e)/P (h)] and m(x) = k(x, y). We then posit m : [0, 1] → and denote the domain of masDm.Up to Lemma 2 [Corrected] and then again from Lemma 3 on, the proof proceeds unchanged.1References[1] V. Crupi, K. Tentori, Confirmation as partial entailment: A representation theorem in inductive logic, J. Appl. Log. 11(2013) 364–372. 1 Meanwhile, a self-contained and corrected version of the proof is available here: http://www.vincenzocrupi.com/website/wp-content/uploads/2014/02/proof_corrected.pdf.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Confirmation as partial entailment A corrected proof

Michael Schippers pointed out to us in personal correspondence an error in the proof of the main result in Crupi, V. and Tentori, K., ”Confirmation as partial entailment: A representation theorem”, Journal of Applied Logic, 11 (2013), pp. 364-372. The flaw spotted by Schippers is that Lemma 2 (p. 369) does not hold in its original formulation. In what follows, we recapitulate the proof in a cor...

متن کامل

On the compactness property of extensions of first-order G"{o}del logic

We study three kinds of compactness in some variants of G"{o}del logic: compactness,entailment compactness, and approximate entailment compactness.For countable first-order underlying language we use the Henkinconstruction to prove the compactness property of extensions offirst-order g logic enriched by nullary connective or the Baaz'sprojection connective. In the case of uncountable first-orde...

متن کامل

Ticket Entailment is decidable

We prove the decidability of the logic T→ of Ticket Entailment. Raised by Anderson and Belnap within the framework of relevance logic, this question is equivalent to the question of the decidability of type inhabitation in simply-typed combinatory logic with the partial basis BBIW. We solve the equivalent problem of type inhabitation for the restriction of simply-typed lambda-calculus to heredi...

متن کامل

On sets of OT rankings

4 Partial rankings 11 4.1 Logic for partial rankings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.2 Entailment between partial rankings . . . . . . . . . . . . . . . . . . . . . . . . 22 4.3 Correspondence between partial rankings and tableaux . . . . . . . . . . . . . 24 4.4 Duality between partial rankings and sets of tableaux . . . . . . . . . . . . . . 27 4.5 The domai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Logic

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2014